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Abstract—This paper presents the Simulation, Tactical Op-
erations and Mission Planning (STOMP) software architec-
ture and framework for simulating, controlling and commu-
nicating with unmanned air vehicles (UAVs) servicing large
distributed sensor networks. STOMP provides hardware-in-
the-loop capability enabling real UAVs and sensors to feed-
back state information, route data and receive command and
control requests while interacting with other real or virtual
objects thereby enhancing support for simulation of dynamic
and complex events.

Index Terms— Autonomous vehicles, communication net-
works, multirobot cooperation, simulation software

I. I NTRODUCTION

The use of unmanned air vehicles (UAVs) in sensing ap-
plications is becoming increasingly important. As the cost
of UAVs decrease, it becomes practicable to use several
UAVs to service large distributed networks to maintain ro-
bust communications, and decrease latency. As this trend
continues it is critical to have tools that allow designers to
simulate, control and prototype networks that use multiple
UAVs. Such tools would allow designers to rapidly test
and develop complex behaviors, conduct trade-off studies,
and test new algorithms and hardware. To address these
design and simulation issues, the Simulation, Tactical Op-
erations and Mission Planning (STOMP) architecture was
developed. STOMP is an application and framework de-
signed to study and operate sensor networks where UAVs
are fundamental to the collection of data.

The framework for STOMP is designed around an object
oriented architecture thereby allowing designers to adapt
behaviors and algorithms of existing objects or assemble
new objects rapidly and easily. As in [1], STOMP uses a
visual editor to allow designers to assemble and configure
each simulation. Designers may specify the state of ev-
ery object in the system individually, in groups or globally
and, using the graphical event configuration system, define
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events to trigger state changes at specified times in order to
test complex behaviors and response to exceptions.

A simulated environment, however, is not sufficient to
completely test all aspects of UAV control, response and
cooperation[2]. It is simply not possible to simulate all of
the dynamics of a full UAV and distributed network system.
However, through a communication subsystem, STOMP
connects the virtual environment to real-world hardware
systems. Command, control and state information is ex-
changed with real UAVs and sensors, creating a feedback
mechanism to both test new algorithms within the virtual
simulation as well as hardware and software implementa-
tion in real UAVs and sensors.

In section II, a high-level functional overview of STOMP
is presented. Predefined UAV and sensor object behaviors
and features are described. The communication, event and
display controllers are also covered. In section III, the soft-
ware framework, class structure, key algorithms and data
structures are described. Future expansion, development
and use of STOMP is described in section IV.

II. FUNCTIONAL ARCHITECTURE

STOMP is designed to simulate UAVs, sensors and their
interactions in a distributed sensor network under a variety
of conditions. It is designed to easily implement control
and cooperation architectures, and displays the reaction of
the architecture to events that the designer can script into
the simulation through a graphical interface. Through an
internal communication controller, STOMP can feedback
information from real UAVs and sensors using wireless
Ethernet for data acquisition from sensors and a wireless
serial interface for command, control and state information
thereby providing hardware-in-the-loop simulations.

A functional block diagram of STOMP is illustrated in
Figure 1. As shown in the figure, STOMP consists of the
following main blocks: 1) Sensor and UAV objects (where



sensor objects are depicted as circles, and UAV objects are
depicted as hexagons); 2) a Communication Controller; 3)
an Event Controller; and 4) a Display Controller. Details
of the functions of these blocks are given in the proceeding
subsections.
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Fig. 1. Functional Block Diagram of STOMP

The UAV and sensor objects contain state information
and algorithms relevant to the simulation and operation
of UAVs and sensors in the network as given in Table I.
Waypoints are the most fundamental building block of all
STOMP simulation objects. The path planning controller
and flight controllers use waypoints as means to control
and calculate heading, position and plan routes. Waypoints
contain only a single state variable, position. Position is
stored in terms of decimal degrees of longitude and lati-
tude. Depending on the configuration of each object, state

TABLE I

State UAV Sensor Waypoint
Position • • •
Altitude • • –
Heading • • –
Speed • • –

Battery Life • • –
Memory Usage • • –

Status • • –
Fuel • – –

Vertical Velocity • – –

updates may be obtained from the event controller (purely
virtual), communication controller (purely real) or a com-
bination (partially virtual). This feedback mechanism in-
creases the richness of the dynamics that STOMP can sim-
ulate through the real and virtual interaction. Table II lists
the static properties within the UAV and sensor objects.
Static properties are set by the designer prior to running
a simulation and define rates and characteristics used for

communication and update of state information for pure or
partially virtual UAVs and sensors.

TABLE II

Static Properties UAV Sensor
IP Address • •

Battery Capacity • •
Battery Drain Rate • •
Memory Capacity • •

Fuel Capacity • –
Fuel Drain Rate • –

Mechanical Characteristics • –

A. UAV Objects

UAV objects are equipped with a flight controller, com-
munication controller and path planning controller as
shown in Figure 2. If an external hardware device is not
connected to that particular UAV, the flight controller sim-
ulates the dynamics of flight, providing position updates,
changes in heading, ground speed, vertical velocity, fuel
status and drain rate, and battery life and drain rate. If the
flight controller is to be connected to a real UAV, the de-
signer will set the appropriate flag when setting the initial
states and parameters for the UAV using a graphical in-
terface. This UAV is then connected via a wireless serial
interface to a MP2000 autopilot engineered by Micropi-
lot[3]. Using a communication wrapper, the MP2000 re-
ceives waypoint information from STOMP in order to con-
trol the direction of flight to service either virtual or real
sensors. STOMP polls the MP2000 in order to update state
information within the simulation asynchronously while
the simulation is stepping through time.

The path planning controller implements the cooperation
architecture described in [4] and path planning algorithm
described in [5]. The path planning controller receives nec-
essary information about the state of the system from other
UAVs and sensors via the communication controller. This
controller provides waypoint information to the flight con-
troller in order to direct the UAV to the next sensor or way-
point.

B. Sensor Objects

Sensors contain their specific data acquisition equipment
and a communication controller. Although STOMP has
been designed to send and receive any kind of data, the dis-
play controller was designed to display and allow the user
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Fig. 2. Virtual UAV and Real UAV Communication

to access image data. The wireless Ethernet network in real
sensors and UAVs is managed using Mobile Mesh[6] rout-
ing software and uses TCP sockets. STOMP operates at the
application layer, while Mobile Mesh operates at layer 3 of
the OSI model, thus STOMP remains independent of the
specific communication and routing methods used in the
real world environment.

Each sensor also contains a communication controller
that implements a subset of the features included in
STOMP. Since sensors only need to unload their data to
UAVs and subsequently into STOMP, the data transfer pro-
tocol and ICMP functionality are the only features that are
implemented in both simulated and real sensor elements.

C. Communication Controller

The communication controller is central to STOMP. It
coordinates all communication between the main event
controller, and real and virtual UAVs and sensors. Since
this controller is the gateway to external hardware, it also
routes command and control requests to the MP2000 au-
topilot via a wireless serial interface. The MP2000 is polled
periodically and state changes are updated for the asso-
ciated UAV object. The state information is then visual-
ized within the simulator, providing the operator a graphi-
cal overview of the state of the system. As the simulation
progresses, the communication controller will upload new
waypoints to the MP2000 as determined by the path plan-
ning controller contained within the partially virtual UAV

as shown in Figure 2.

As either virtual or real UAVs fly close to their target sen-
sor node, the communication controller will attempt to con-
tact the sensor using ICMP over a wireless Ethernet inter-
face. If initial contact can be established, the UAV’s com-
munication controller will attempt to communicate with
the sensor’s communication controller in order to exchange
data. The proprietary protocol uses a connected TCP socket
to send and receive the appropriate data. The protocol can
resume broken file transfers and provides full error check-
ing in order to guarantee rapid and reliable transmission
over possibly unreliable connections. If communication is
lost, the communication controller attempts to contact the
sensor again using ICMP and resume the file transfer pro-
cess. If there was no new data available at the sensor or the
data was successfully transferred, the communication con-
troller notifies the path planning object and the UAV is sent
to the next waypoint.

D. Event Controller

The event controller initializes the simulation, and pro-
vides several facilities for scripting simulation scenarios
using a graphical interface. Scripting scenarios allows de-
signers to study the reaction of the cooperation and path
planning algorithms to various events. An event consists
of a change in state (position, velocity, heading, etc.), dis-
abling or enabling a sensor or UAV and the time at which
the event occurs. STOMP tracks time in terms of steps
which do not necessarily correlate with physical times.
Events that occur externally are received by the communi-
cation controller and processed asynchronously to the event
controller.

The event controller also provides facilities for post-
simulation analysis of network communications. As the
simulation progresses, all state information of every ele-
ment in the simulation (sensors and UAVs) is recorded,
along with line-of-sight data computed from the Digital
Terrain Elevation Data (DTED) data. This state informa-
tion can be exported to a file and is suitable for postprocess-
ing by other analysis tools such as Matlab, OMNet++[7] or
OPNETTM . In this manner, the packet-level behavior of the
network can be studied.

E. Display Controller

STOMP is divided into two different display modes, the
designer view and the simulator view. When a new simu-
lation is being created, the designer view is used to place
objects within the coordinate space of the DTED space rep-
resented as a color coded topographical relief map. Labels



may be added at various positions, enabling the identifica-
tion of useful landmarks on the map. The user may either
input the coordinates directly or use the mouse and graph-
ical interface to place objects. While in the designer view,
object properties and initial states may also be set.

When the simulation is started, the simulator view ap-
pears in front of the designer view. In this mode, display
controller provides the designer with visual feedback of the
state of the network as it progresses. It also displays data
collected by operational UAVs from deployed sensors. The
positions of the UAVs and sensors, along with the current
UAV paths, are displayed on top of shaded terrain maps
loaded from the DTED. When new data is received from
a sensor, the sensor icon changes color, and the image is
displayed by clicking on the indicator.

III. SOFTWARE ARCHITECTURE

STOMP was written in C++ using a highly object ori-
ented design methodology. The modularity of the design
allows for new objects to be designed and integrated into
the framework rapidly. Objects are derived from base
classes and provide updated functionality in order to sup-
port object-specific features. An overview of the class hi-
erarchy is shown in Figure 3. Programmers may use in-
heritance to create more feature rich objects tailored to a
particular application. All STOMP objects provide an ini-
tialization function and a Serialize() function for saving and
restoring their state on disk.

A. CSTOMPDoc - Scenario Class

The CSTOMPDoc class contains all necessary informa-
tion to start a simulation. UAVs, sensors, labels, way-
points, events and display parameters are stored in this
class. CSTOMPDoc provides the mechanism for storing
and retrieving state information for the scenario at time in-
dex 0. When a simulation is created, objects are copied out
of this class into the simulation/event controller class for
processing beyond time index 0.

When a simulation is ready for execution, CSTOMPDoc
creates a new thread, opens a new view window and ini-
tializes the simulation and event controller. Control is then
passed to the new view allowing the designer to begin test-
ing the scenario.

B. CSTOMPSim - Event and Simulation Class

CSTOMPSim is the main event and simulation con-
troller for the STOMP framework. After a scenario is de-
signed, all of the object information defined by the user is
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Fig. 3. UML Diagram of STOMP Framework

loaded into this class. CSTOMPSim then initializes all of
the UAV and simulation objects, preparing them for syn-
chronous state updates using the simulation clock which is
controlled through the graphical interface.

CreateVer() is used to create the initial snapshot of the
network for processing by the path planning controller in
the leader UAV. As exceptions occur to the network, Creat-
eVer() is used to create a new snapshot of the network for
the leader UAV before transmitting its changes to the re-
maining UAVs that are controlled by CSTOMPSim. When
the no more UAV objects are connected to a version, Re-
moveVer() is called to conserve memory and remove the
stale version from the linked list.

CSTOMPSim creates a thread for the communication
controller so that asynchronous updates to state informa-
tion received from the MP2000 connected UAV or data
received from external sensors can be processed indepen-



dently of the simulation clock. This allows for the seamless
integration of real and virtual devices without concerning
the designer with timing issues. While a simulation can
progress synchronously, a real UAV or sensor need not wait
for STOMP’s simulation clock pulse to continue with its
next operation.

C. CSTOMPCom - Communication Controller Class

CSTOMPCom contains all of the logic to process com-
munication requests received from the event controller,
state updates or command and control to the MP2000 au-
topilot, and data transfer between UAVs and sensors, both
virtual and real. The communication controller runs in
an independent thread created by CSTOMPSim and can
receive messages sent to its thread process, interrupts re-
ceived from the MP2000 connected via a wireless serial in-
terface or interrupts received via a TCP connected socket.

When an event occurs that requires the communication
controller to take a particular action, such as to transmit
new path planning information to all UAVs in the network,
a message is sent to the process. Messages are processed in
the MessagePump() function and action is taken to process
the message and notify the event controller or target objects
depending on the type of request received. CSTOMPSim,
the UAV class (CUAV), and the sensor class (CSensor) pro-
vide mechanisms to lock internal data structures as needed,
such as when processing asynchronous state updates re-
ceived from external hardware. Data structure locking is
the mechanism that prevents the asynchronous updates to
interfere with the clocked events within CSTOMPSim.

Several functions within CSTOMPCom are called to
take a particular action once a message has been properly
decoded by MessagePump(). The DataXfer() function is
called by a UAV to receive image data from real sensors
after initial contact is verified using ICMPSend(). If new
data has been received, CSTOMPCom will call VoiceNo-
tify() to notify the operator using a synthesized voice that
new data was received and identifies the sensor it was re-
ceived from. If the leader UAV wishes to rebroadcast a new
path plan, the UAV object will send a message which will
trigger a call to xmitPP(). This function sends out new path
plan and waypoint data to all UAVs in the network.

D. CUAV, CSensor - Simulated Objects

Simulated objects such as the UAV and sensors are con-
tained in the classes CUAV and CSensor respectively. Each
is derived from a common base class that contains behav-
ior and information related to both objects and necessary
for integration into STOMP. For example, every STOMP

object displayed on the screen must supply a Draw() func-
tion and similarly, every object that is clocked within the
simulator must provide an UpdateData() function. The in-
terfaces for these functions is provided in the common base
class. Simulated objects must also provide a Serialize()
function for storing and retrieving its state information.

When the simulation clock triggers a call to Update-
Data(), virtual UAVs and sensors update various state vari-
ables based upon static properties and rates set by the de-
signer and dynamic models programmed into the function.
UpdateData() calls UpdatePosition() which calculates the
new position of the object based on its heading and speed.
If it is a UAV object, the UpdatePosition() function checks
to see if the UAV has arrived at a sensor and calls appro-
priate communication routines in CSTOMPCom to contact
the sensor. Once CSTOMPCom has notified the UAV that
its ready to proceed (after either a successful or unsuccess-
ful attempt to communicate with the sensor), the UAV cal-
culates a new heading to the next waypoint and proceeds.

Periodically, CSTOMPCom will call MPilotPump() to
poll the MP2000 for new state information or to send new
waypoint information if a MP2000 is associated with a
UAV in the simulation. The virtual UAV that is connected
to the MP2000 may trigger a call to MPilotPump() by send-
ing the appropriate message to the CSTOMPCom thread if,
for example, the network has been reorganized or the UAV
needs to fly to another waypoint for some other reason.

E. CPathPlan - Path Planning Class

CSTOMPSim and every UAV object contains its own in-
dependent CPathPlan object. CPathPlan is the class that
contains all of the cooperation and global path planning
logic. During initialization, the path planning object is
given a snap shot of the state of the network, including all
UAV and sensor states. As needed, the path planning object
will signal CSTOMPCom to transmit or retrieve informa-
tion from real or virtual UAVs and sensors.

When exceptions in the network occur, such as the loss
of a UAV or sensor, the communication object is first no-
tified. It then creates a new version or snapshot of the net-
work in CSTOMPSim. The leader[4] UAV is notified and
given a pointer to the new state of the network. This new
version is used by the leader to perform path planning and
broadcast new commands and information to other UAVs.
Like all STOMP simulation objects, main processing oc-
curs in the clocked UpdateData() function.



IV. CONCLUSION AND FUTURE WORK

In this paper we have presented an overview of the
STOMP application and framework. As UAVs become
less expensive to build and implement, these types of de-
vices become easier to deploy in order to service large dis-
tributed networks. In order to increase robustness or to de-
crease latency, cooperation between UAVs becomes neces-
sary. STOMP is a feature rich environment through which
a designer may test new algorithms involving cooperation,
communication, command or control of these networks.
The graphical interface provides a mechanism to quickly
setup purely virtual, partially virtual or purely real environ-
ments quickly and easily. When configured for purely real
objects, STOMP essentially acts as a ground station, pro-
viding visual feedback to the operator of the state of the
network and access to remote data.

Since it is impossible at this time to model all of the dy-
namics of a real system in a lab environment, the STOMP
framework provides the ability to interact with external de-
vices in real world deployments. The feedback from ex-
ternal UAVs and sensors has provided an extremely useful
mechanism to more accurately test the behavior of large
networks with very little hardware.

Thus far STOMP has been used as a command and con-
trol unit for the real UAVs by providing waypoint informa-
tion to the MP2000 autopilot and processing the coopera-
tive behaviors within the simulator (partially virtual). In the
next phase of our research, the cooperative behaviors that
have been modelled thus far in STOMP as described in [4]
and [5] will be implemented in real UAVs. STOMP will be
used to fully test the behavior of real UAVs and sensors by
providing simulated communication and behavior making
the UAV and sensors believe they are communicating with
a much larger network.

Advancing the modularity and increasing the script-
ing features available to STOMP designers has potential
benefits for a wide range of applications beyond simple
UAV/sensor communication networks. In many areas of
mobile robotics where large scale deployments or testing
is necessary, STOMP can reduce the time and cost of de-
signing these networks, testing complex behaviors and im-
plementing those features through command and control or
autonomy by providing a flexible framework that can inter-
act with real devices and simulate larger environments.
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